# k3s & k3d Basic
# k3s
Lightweight Kubernetes
官方站点:https://k3s.io
官方仓库:https://github.com/rancher/k3s
# 安装
将k3s
安装成为服务:
curl -sfL https://get.k3s.io | sh -
# 添加worker节点
curl -sfL https://get.k3s.io | K3S_URL=https://k3s-server:6443 K3S_TOKEN=`ssh k3s-server cat /var/lib/rancher/k3s/server/node-token` sh -
2
3
A kubeconfig file is written to /etc/rancher/k3s/k3s.yaml
.
手动安装使用k3s
:
- Download
k3s
from latest release (opens new window), x86_64, armhf, and arm64 are supported. - Run server.
sudo k3s server &
# Kubeconfig is written to /etc/rancher/k3s/k3s.yaml
sudo k3s kubectl get nodes
# On a different node run the below. NODE_TOKEN comes from
# /var/lib/rancher/k3s/server/node-token on your server
sudo k3s agent --server https://myserver:6443 --token ${NODE_TOKEN}
2
3
4
5
6
7
# k3d 简介
k3d is a lightweight wrapper to run k3s (Rancher Lab’s minimal Kubernetes distribution) in docker. k3d makes it very easy to create single- and multi-node k3s clusters in docker, e.g. for local development on Kubernetes.
官方站点: https://k3d.io
# 安装
# linux系统下
# use the install script to grab the latest release:
wget: wget -q -O - https://raw.githubusercontent.com/rancher/k3d/main/install.sh | bash
# 或者
curl: curl -s https://raw.githubusercontent.com/rancher/k3d/main/install.sh | bash
2
3
4
5
# Windows系统下
从官方仓库 (opens new window)中下载对应的包, 配置好环境变量即可.
# 集群部署
单节点部署:
k3d cluster create mycluster
多节点部署:
k3d cluster create multiserver --servers 3
# 向已存在的集群中添加节点
k3d node create newserver --cluster multiserver --role server
# 部署两个agent节点
k3d cluster create --api-port 6550 -p "8081:80@loadbalancer" --agents 2
2
3
4
5
# 输出kubeconfig信息
k3d kubeconfig write k3s-default
# 暴露服务
# 1. via Ingress
In this example, we will deploy a simple nginx webserver deployment and make it accessible via ingress. Therefore, we have to create the cluster in a way, that the internal port 80 (where the
traefik
ingress controller is listening on) is exposed on the host system.
Create a cluster, mapping the ingress port 80 to localhost:8081
k3d cluster create --api-port 6550 -p "8081:80@loadbalancer" --agents 2
Good to know
--api-port 6550
is not required for the example to work. It’s used to havek3s
‘s API-Server listening on port 6550 with that port mapped to the host system.- the port-mapping construct
8081:80@loadbalancer
means
- map port
8081
from the host to port80
on the container which matches the nodefilterloadbalancer
- the
loadbalancer
nodefilter matches only theserverlb
that’s deployed in front of a cluster’s server nodes
- all ports exposed on the
serverlb
will be proxied to the same ports on all server nodes in the clusterGet the kubeconfig file
export KUBECONFIG="$(k3d kubeconfig write k3s-default)"
Create a nginx deployment
kubectl create deployment nginx --image=nginx
Create a ClusterIP service for it
kubectl create service clusterip nginx --tcp=80:80
Create an ingress object for it with
kubectl apply -f
Note:k3s
deploystraefik
(opens new window) as the default ingress controllerapiVersion: extensions/v1beta1 kind: Ingress metadata: name: nginx annotations: ingress.kubernetes.io/ssl-redirect: "false" spec: rules: - http: paths: - path: / backend: serviceName: nginx servicePort: 80
1
2
3
4
5
6
7
8
9
10
11
12
13
14Curl it via localhost
curl localhost:8081/
# 2. via NodePort
Create a cluster, mapping the port 30080 from agent-0 to localhost:8082
k3d cluster create mycluster -p "8082:30080@agent[0]" --agents 2
- Note: Kubernetes’ default NodePort range is
30000-32767
(opens new window)- Note: You may as well expose the whole NodePort range from the very beginning, e.g. via
k3d cluster create mycluster --agents 3 -p "30000-32767:30000-32767@server[0]"
(See this video from @portainer (opens new window))… (Steps 2 and 3 like above) …
Create a NodePort service for it with
kubectl apply -f
apiVersion: v1 kind: Service metadata: labels: app: nginx name: nginx spec: ports: - name: 80-80 nodePort: 30080 port: 80 protocol: TCP targetPort: 80 selector: app: nginx type: NodePort
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16Curl it via localhost
curl localhost:8082/
# 参考链接
k3d官方github仓库: https://github.com/rancher/k3d
k3d Documentation: https://k3d.io/